Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Front Immunol ; 15: 1347948, 2024.
Article in English | MEDLINE | ID: mdl-38370417

ABSTRACT

Background: Anti-IgLON5 disease is a neurological disorder characterized by autoantibodies against IgLON5 and pathological evidence of neurodegeneration. IgLON5 is a cell adhesion molecule of unknown function that is highly expressed in the brain. Our aim was to investigate the impact of IgLON5 loss-of-function in evaluating brain morphology, social behavior, and the development of symptoms observed in an IgLON5 knockout (IgLON5-KO) mouse model. Methods: The IgLON5-KO mice were generated using CRISPR-Cas9 technology. Immunohistochemistry on fixed sagittal brain sections and Western blotting brain lysates were used to confirm IgLON5 silencing and to evaluate the presence of other cell surface proteins. Two- month-old IgLON5-KO and wild-type (WT) mice underwent a comprehensive battery of behavioral tests to assess 1) locomotion, 2) memory, 3) anxiety, 4) social interaction, and 5) depressive-like behavior. Brain sections were examined for the presence of anatomical abnormalities and deposits of hyperphosphorylated tau in young adult (2-month-old) and aged (22-month-old) mice. Results: Mice did not develop neurological symptoms reminiscent of those seen in patients with anti-IgLON5 disease. Behavioral testing revealed that 2-month-old IgLON5-KO mice showed subtle alterations in motor coordination and balance. IgLON5-KO females exhibited hyperactivity during night and day. Males were observed to have depressive-like behavior and excessive nest-building behavior. Neuropathological studies did not reveal brain morphological alterations or hyperphosphorylated tau deposits. Conclusion: IgLON5-KO mice showed subtle alterations in behavior and deficits in fine motor coordination but did not develop the clinical phenotype of anti-IgLON5 disease.


Subject(s)
Autoimmune Diseases , Neurodegenerative Diseases , Animals , Female , Infant , Male , Mice , Anxiety , Autoantibodies/metabolism , Brain/metabolism , Cell Adhesion Molecules, Neuronal , Mice, Knockout , Social Behavior , Autoimmune Diseases/genetics , Neurodegenerative Diseases/genetics
2.
Ann Neurol ; 92(1): 81-86, 2022 07.
Article in English | MEDLINE | ID: mdl-35373379

ABSTRACT

Ophelia syndrome or encephalitis with antibodies against the metabotropic glutamate receptor 5 (mGluR5) manifests with behavioral changes, memory deficits, and anxiety. To study the antibody pathogenicity, mice received continuous cerebroventricular infusion of patients' or controls' immunoglobulin G (IgG) for 14 days, followed by a 15-day washout. The effects on hippocampal mGluR5 clusters were determined by confocal microscopy. Animals infused with patients' IgG, but not controls' IgG, showed memory impairment, increased anxiety, and decreased neuronal surface mGluR5 clusters. After antibody clearance, both behavioral and molecular changes reversed to baseline conditions. These findings support the pathogenicity of these antibodies in anti-mGluR5 encephalitis. ANN NEUROL 2022;92:81-86.


Subject(s)
Encephalitis , Receptor, Metabotropic Glutamate 5 , Animals , Autoantibodies , Humans , Immunoglobulin G , Memory Disorders , Mice , Neurons
3.
Ann Neurol ; 91(6): 801-813, 2022 06.
Article in English | MEDLINE | ID: mdl-35253937

ABSTRACT

OBJECTIVE: The encephalitis associated with antibodies against contactin-associated proteinlike 2 (CASPR2) is presumably antibody-mediated, but the antibody effects and whether they cause behavioral alterations are not well known. Here, we used a mouse model of patients' immunoglobulin G (IgG) transfer and super-resolution microscopy to demonstrate the antibody pathogenicity. METHODS: IgG from patients with anti-CASPR2 encephalitis or healthy controls was infused into the cerebroventricular system of mice. The levels and colocalization of CASPR2 with transient axonal glycoprotein 1 (TAG1) were determined with stimulated emission depletion microscopy (40-70µm lateral resolution). Hippocampal clusters of Kv1.1 voltage-gated potassium channels (VGKCs) and GluA1-containing α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) were quantified with confocal microscopy. Behavioral alterations were assessed with standard behavioral paradigms. Cultured neurons were used to determine the levels of intracellular CASPR2 and TAG1 after exposure to patients' IgG. RESULTS: Infusion of patients' IgG, but not controls' IgG, caused memory impairment along with hippocampal reduction of surface CASPR2 clusters and decreased CASPR2/TAG1 colocalization. In cultured neurons, patients' IgG led to an increase of intracellular CASPR2 without affecting TAG1, suggesting selective CASPR2 internalization. Additionally, mice infused with patients' IgG showed decreased levels of Kv1.1 and GluA1 (two CASPR2-regulated proteins). All these alterations and the memory deficit reverted to normal after removing patients' IgG. INTERPRETATION: IgG from patients with anti-CASPR2 encephalitis causes reversible memory impairment, inhibits the interaction of CASPR2/TAG1, and decreases the levels of CASPR2 and related proteins (VGKC, AMPAR). These findings fulfill the postulates of antibody-mediated disease and provide a biological basis for antibody-removing treatment approaches. ANN NEUROL 2022;91:801-813.


Subject(s)
Autoantibodies , Encephalitis , Membrane Proteins , Nerve Tissue Proteins , Potassium Channels, Voltage-Gated , Animals , Autoantibodies/immunology , Contactin 2/immunology , Encephalitis/immunology , Humans , Immunoglobulin G/metabolism , Membrane Proteins/immunology , Membrane Proteins/metabolism , Mice , Nerve Tissue Proteins/immunology , Nerve Tissue Proteins/metabolism
4.
Neurology ; 98(14): e1489-e1498, 2022 04 05.
Article in English | MEDLINE | ID: mdl-35145006

ABSTRACT

BACKGROUND AND OBJECTIVES: An important challenge in diagnosing anti-NMDA receptor (NMDAR) encephalitis (NMDARe) is differentiating it from a first episode of psychosis (FEP) caused by a psychiatric disease (pFEP). CSF antibody testing distinguishes these diseases, but spinal taps are difficult to obtain in psychiatric facilities. A separate problem is the lack of biomarkers of NMDARe severity and outcome. Here we assessed the performance of neurofilament light chain (NfL) testing in these settings. METHODS: In this observational study, NfL levels were determined with single-molecule array in patients with NMDARe, pFEP, herpes simplex encephalitis (HSE), and healthy participants (HC), with the last 2 groups used as controls. Receiver operating characteristic (ROC) analyses were performed to assess the prediction accuracy of serum NfL (sNfL) levels for NMDARe and pFEP and to obtain clinically useful cutoffs. RESULTS: One hundred eighteen patients with NMDARe (33 with isolated psychosis at presentation), 45 with pFEP, 36 with HSE, and 36 HC were studied. Patients with NMDARe with seizures/status epilepticus, intensive care unit admission, and CSF pleocytosis (>20 white blood cells/µL) and without early immunotherapy were more likely to have higher NfL (mainly in CSF) than individuals with NMDARe without these features. NfL levels at diagnosis of NMDARe did not correlate with outcome at 1-year follow-up assessed with the modified Rankin Scale. Patients with NMDARe had significantly higher sNfL than individuals with pFEP and HC and lower sNfL than patients with HSE. ROC analysis of sNfL between NMDARe with isolated psychosis and pFEP provided an area under the curve of 0.93 (95% CI 0.87-0.99) and an sNfL cutoff ≥15 pg/mL to distinguish these disorders (sensitivity 85%, specificity 96%, positive likelihood ratio 19.3). Forty-three of 45 (96%) patients with pFEP had sNfL<15 pg/mL, whereas only 5 of 33 (15%) with NMDARe with isolated psychosis were below this cutoff (risk estimation NMDARe vs pFEP: odds ratio 120.4 [95% CI 21.8-664], p < 0.001). None of the patients with HSE and 35 of 36 (97%) HC had sNfL<15 pg/mL. DISCUSSION: NfL measured at diagnosis of NMDARe associated with features of disease severity but not with long-term outcome. Young patients with FEP and sNfL ≥15 pg/mL had a 120 times higher chance of having NMDARe than those with pFEP. This cutoff correctly classified 96% of patients with pFEP and 85% of patients with NMDARe with isolated psychosis. Patients with FEP of unclear etiology and sNfL ≥15 pg/mL should undergo CSF NMDAR antibody testing.


Subject(s)
Anti-N-Methyl-D-Aspartate Receptor Encephalitis , Encephalitis, Herpes Simplex , Psychotic Disorders , Anti-N-Methyl-D-Aspartate Receptor Encephalitis/complications , Anti-N-Methyl-D-Aspartate Receptor Encephalitis/diagnosis , Biomarkers , Humans , Intermediate Filaments , Neurofilament Proteins , Psychotic Disorders/etiology
5.
Article in English | MEDLINE | ID: mdl-34903638

ABSTRACT

BACKGROUND AND OBJECTIVES: To demonstrate that an analog (SGE-301) of a brain-derived cholesterol metabolite, 24(S)-hydroxycholesterol, which is a selective positive allosteric modulator (PAM) of NMDA receptors (NMDARs), is able to reverse the memory and synaptic alterations caused by CSF from patients with anti-NMDAR encephalitis in an animal model of passive transfer of antibodies. METHODS: Four groups of mice received (days 1-14) patients' or controls' CSF via osmotic pumps connected to the cerebroventricular system and from day 11 were treated with daily subcutaneous injections of SGE-301 or vehicle (no drug). Visuospatial memory, locomotor activity (LA), synaptic NMDAR cluster density, hippocampal long-term potentiation (LTP), and paired-pulse facilitation (PPF) were assessed on days 10, 13, 18, and 26 using reported techniques. RESULTS: On day 10, mice infused with patients' CSF, but not controls' CSF, presented a significant visuospatial memory deficit, reduction of NMDAR clusters, and impairment of LTP, whereas LA and PPF were unaffected. These alterations persisted until day 18, the time of maximal deficits in this model. In contrast, mice that received patients' CSF but from day 11 were treated with SGE-301 showed memory recovery (day 13), and on day 18, all paradigms (memory, NMDAR clusters, and LTP) had reversed to values similar to those of controls. On day 26, no differences were observed among experimental groups. DISCUSSION: An oxysterol biology-based PAM of NMDARs is able to reverse the synaptic and memory deficits caused by CSF from patients with anti-NMDAR encephalitis. These findings suggest a novel adjuvant treatment approach that deserves future clinical evaluation.


Subject(s)
Anti-N-Methyl-D-Aspartate Receptor Encephalitis/drug therapy , Autoantibodies/administration & dosage , Autoantibodies/cerebrospinal fluid , Cerebrospinal Fluid , Hydroxycholesterols/pharmacology , Memory Disorders/drug therapy , Animals , Anti-N-Methyl-D-Aspartate Receptor Encephalitis/chemically induced , Behavior, Animal/drug effects , Disease Models, Animal , Humans , Hydroxycholesterols/analysis , Male , Memory Disorders/chemically induced , Mice , Mice, Inbred C57BL
6.
Article in English | MEDLINE | ID: mdl-34580181

ABSTRACT

BACKGROUND AND OBJECTIVES: To determine in a mouse model whether neonatal Fc receptor (FcRn) blockade prevents the placental transfer of class G immunoglobulin (IgG) derived from patients with anti-NMDA receptor (NMDAR) encephalitis and their pathogenic effects on the fetuses and offspring. METHODS: Pregnant C57BL/6J mice were administered via tail vein FcRn antibody (FcRn-ab) or saline solution 6 hours before administration of patients' or controls' IgG on days 14, 15, and 16 of gestation. Three experimental groups were established: mice receiving controls' IgG, patients' IgG, or patients' IgG along with pretreatment with FcRn-ab. Immunohistochemical staining, confocal microscopy, hippocampal long-term potentiation, and standardized developmental and behavioral tasks were used to assess the efficacy of treatment with FcRn-ab. RESULTS: In pregnant mice that received patients' IgG, treatment with FcRn-ab prevented the IgG from reaching the fetal brain, abrogating the decrease of NMDAR clusters and the reduction of cortical plate thickness that were observed in fetuses from untreated pregnant mice. Moreover, among the offspring of mothers that received patients' IgG, those whose mothers were treated with FcRn-ab did not develop the alterations that occurred in offspring of untreated mothers, including impairment in hippocampal plasticity, delay in innate reflexes, and visuospatial memory deficits. DISCUSSION: FcRn blockade prevents placental transfer of IgG from patients with anti-NMDAR encephalitis and abrogates the synaptic and neurodevelopmental alterations caused by patients' antibodies. This model has potential therapeutic implications for other antibody-mediated diseases of the CNS during pregnancy.


Subject(s)
Anti-N-Methyl-D-Aspartate Receptor Encephalitis/immunology , Antibodies, Blocking/administration & dosage , Autoantibodies/administration & dosage , Histocompatibility Antigens Class I/immunology , Immunoglobulin G/administration & dosage , Maternal-Fetal Exchange/drug effects , Placental Circulation/drug effects , Receptors, Fc/immunology , Animals , Animals, Newborn , Disease Models, Animal , Female , Humans , Mice , Mice, Inbred C57BL , Pregnancy
7.
Neurology ; 97(1): e61-e75, 2021 07 06.
Article in English | MEDLINE | ID: mdl-33980703

ABSTRACT

OBJECTIVES: To report the neuropsychiatric features and frequency of NMDA receptor (NMDAR) and other neuronal immunoglobulin G antibodies in patients with first episode psychosis (FEP) and to assess the performance of reported warning signs and criteria for autoimmune psychosis (AP). METHODS: This was a prospective observational study of patients with FEP assessed for neuropsychiatric symptoms, serum and CSF neuronal antibodies (brain immunohistochemistry, cell-based assays, live neurons), and warning signs and criteria of AP. Previous autoimmune FEP series were reviewed. RESULTS: One hundred five patients were included; their median age was 30 (range 14-75) years, and 44 (42%) were female. None had neuronal antibodies. Two of 105 (2%) had CSF pleocytosis, 4 of 100 (4%) had brain MRI abnormalities, and 3 of 73 (4%) EEG alterations. Thirty-four (32%) and 39 (37%) patients fulfilled 2 sets of warning signs of AP, and 21 (20%) fulfilled criteria of possible or probable AP, yet none developed AP. The cause of FEP was psychiatric in 101 (96%) and nonpsychiatric in 4 (4%). During this study, 3 patients with psychosis caused by anti-NMDAR encephalitis were transferred to our center; 2 did not meet criteria for possible AP. Of 1,159 reported patients with FEP, only 7 (1%) had CSF studies; 36 (3%) had serum NMDAR antibodies (without definite diagnosis of AP), and 4 had CSF NMDAR antibodies (3 classic anti-NMDAR encephalitis and 1 with isolated psychiatric features). CONCLUSIONS: NMDAR antibodies were not found in patients with FEP unless they had anti-NMDAR encephalitis. Warning signs and criteria for AP have limited utility when neurologic symptoms are absent or paraclinical tests are normal. A diagnostic algorithm for autoimmune FEP is provided.


Subject(s)
Psychotic Disorders/cerebrospinal fluid , Psychotic Disorders/psychology , Adolescent , Adult , Aged , Anti-N-Methyl-D-Aspartate Receptor Encephalitis/psychology , Antibodies/analysis , Autoantibodies/analysis , Autoimmune Diseases/cerebrospinal fluid , Autoimmune Diseases/immunology , Autoimmune Diseases/psychology , Electroencephalography , Female , Humans , Immunoglobulin G/immunology , Immunohistochemistry , Magnetic Resonance Imaging , Male , Middle Aged , Prospective Studies , Psychotic Disorders/immunology , Receptors, N-Methyl-D-Aspartate/immunology , Young Adult
8.
Article in English | MEDLINE | ID: mdl-33172961

ABSTRACT

OBJECTIVE: To determine whether maternofetal transfer of NMDA receptor (NMDAR) antibodies has pathogenic effects on the fetus and offspring, we developed a model of placental transfer of antibodies. METHODS: Pregnant C57BL/6J mice were administered via tail vein patients' or controls' immunoglobulin G (IgG) on days 14-16 of gestation, when the placenta is able to transport IgG and the immature fetal blood-brain barrier is less restrictive to IgG crossing. Immunohistochemical and DiOlistic (gene gun delivery of fluorescent dye) staining, confocal microscopy, standardized developmental and behavioral tasks, and hippocampal long-term potentiation were used to determine the antibody effects. RESULTS: In brains of fetuses, patients' IgG, but not controls' IgG, bound to NMDAR, causing a decrease in NMDAR clusters and cortical plate thickness. No increase in neonatal mortality was observed, but offspring exposed in utero to patients' IgG had reduced levels of cell-surface and synaptic NMDAR, increased dendritic arborization, decreased density of mature (mushroom-shaped) spines, microglial activation, and thinning of brain cortical layers II-IV with cellular compaction. These animals also had a delay in innate reflexes and eye opening and during follow-up showed depressive-like behavior, deficits in nest building, poor motor coordination, and impaired social-spatial memory and hippocampal plasticity. Remarkably, all these paradigms progressively improved (becoming similar to those of controls) during follow-up until adulthood. CONCLUSIONS: In this model, placental transfer of patients' NMDAR antibodies caused severe but reversible synaptic and neurodevelopmental alterations. Reversible antibody effects may contribute to the infrequent and limited number of complications described in children of patients who develop anti-NMDAR encephalitis during pregnancy.


Subject(s)
Autoantibodies/toxicity , Brain/pathology , Prenatal Exposure Delayed Effects , Animals , Behavior, Animal , Female , Humans , Immunoglobulin G , Maternal-Fetal Exchange , Mice , Mice, Inbred C57BL , Placenta , Pregnancy , Pregnancy Complications
9.
Neurology ; 95(22): e3012-e3025, 2020 12 01.
Article in English | MEDLINE | ID: mdl-32928978

ABSTRACT

OBJECTIVE: To clinically characterize patients with anti-metabotropic glutamate receptor (mGluR) 1 encephalitis, to identify prognostic factors, and to study the immunoglobulin G (IgG) subclasses and effects of antibodies on neuronal mGluR1 clusters. METHODS: Clinical information on new and previously reported patients was reviewed. Antibodies to mGluR1 and IgG subclasses were determined with brain immunohistochemistry and cell-based assays, and their effects on mGluR1 clusters were studied on rat hippocampal neurons. RESULTS: Eleven new patients were identified (10 adults, 1 child);4 were female. In these and 19 previously reported cases (n = 30, median age 55 years), the main clinical manifestation was a subacute cerebellar syndrome that in 25 (86%) patients was associated with behavioral/cognitive changes or other neurologic symptoms. A tumor was found in 3 of 26 (11%). Brain MRI was abnormal in 7 of 19 (37%) at onset and showed cerebellar atrophy in 10 of 12 (83%) at follow-up. Twenty-five of 30 (83%) patients received immunotherapy. Follow-up was available for 25: 13 (52%) had clinical stabilization; 10 (40%) showed significant improvement; and 2 died. At the peak of the disease, patients with bad outcome at 2 years (modified Rankin Scale score > 2, n = 7) were more likely to have higher degree of initial disability, as reflected by a worse Scale for Assessment and Rating of Ataxia score, and more frequent need of assistance to walk. Antibodies to mGluR1 were mainly IgG1 and caused a significant decrease of mGluR1 clusters in cultured neurons. CONCLUSIONS: Anti-mGluR1 encephalitis manifests as a severe cerebellar syndrome, often resulting in long-term disability and cerebellar atrophy. The antibodies are pathogenic and cause significant decrease of mGluR1 clusters in cultured neurons.


Subject(s)
Autoantibodies/immunology , Autoimmune Diseases of the Nervous System/diagnosis , Autoimmune Diseases of the Nervous System/immunology , Cerebellar Diseases/diagnosis , Cerebellar Diseases/immunology , Encephalitis/diagnosis , Encephalitis/immunology , Receptors, Metabotropic Glutamate/immunology , Adult , Aged , Animals , Atrophy/pathology , Autoimmune Diseases of the Nervous System/complications , Cells, Cultured , Cerebellar Diseases/etiology , Cerebellar Diseases/pathology , Child , Embryo, Mammalian , Encephalitis/complications , Female , Follow-Up Studies , Hippocampus/cytology , Humans , Immunoglobulin G/classification , Immunotherapy , Magnetic Resonance Imaging , Male , Middle Aged , Neurons , Prognosis , Rats
10.
Brain ; 143(9): 2709-2720, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32830245

ABSTRACT

Anti-N-methyl-d-aspartate receptor (NMDAR) encephalitis is an immune-mediated disease characterized by a complex neuropsychiatric syndrome in association with an antibody-mediated decrease of NMDAR. About 85% of patients respond to immunotherapy (and removal of an associated tumour if it applies), but it often takes several months or more than 1 year for patients to recover. There are no complementary treatments, beyond immunotherapy, to accelerate this recovery. Previous studies showed that SGE-301, a synthetic analogue of 24(S)-hydroxycholesterol, which is a potent and selective positive allosteric modulator of NMDAR, reverted the memory deficit caused by phencyclidine (a non-competitive antagonist of NMDAR), and prevented the NMDAR dysfunction caused by patients' NMDAR antibodies in cultured neurons. An advantage of SGE-301 is that it is optimized for systemic delivery such that plasma and brain exposures are sufficient to modulate NMDAR activity. Here, we used SGE-301 to confirm that in cultured neurons it prevented the antibody-mediated reduction of receptors, and then we applied it to a previously reported mouse model of passive cerebroventricular transfer of patient's CSF antibodies. Four groups were established: mice receiving continuous (14-day) infusion of patients' or controls' CSF, treated with daily subcutaneous administration of SGE-301 or vehicle (no drug). The effects on memory were examined with the novel object location test at different time points, and the effects on synaptic levels of NMDAR (assessed with confocal microscopy) and plasticity (long-term potentiation) were examined in the hippocampus on Day 18, which in this model corresponds to the last day of maximal clinical and synaptic alterations. As expected, mice infused with patient's CSF antibodies, but not those infused with controls' CSF, and treated with vehicle developed severe memory deficit without locomotor alteration, accompanied by a decrease of NMDAR clusters and impairment of long-term potentiation. All antibody-mediated pathogenic effects (memory, synaptic NMDAR, long-term potentiation) were prevented in the animals treated with SGE-301, despite this compound not antagonizing antibody binding. Additional investigations on the potential mechanisms related to these SGE-301 effects showed that (i) in cultured neurons SGE-301 prolonged the decay time of NMDAR-dependent spontaneous excitatory postsynaptic currents suggesting a prolonged open time of the channel; and (ii) it significantly decreased, without fully preventing, the internalization of antibody-bound receptors suggesting that additional, yet unclear mechanisms, contribute in keeping unchanged the surface NMDAR density. Overall, these findings suggest that SGE-301, or similar NMDAR modulators, could potentially serve as complementary treatment for anti-NMDAR encephalitis and deserve future investigations.


Subject(s)
Anti-N-Methyl-D-Aspartate Receptor Encephalitis/metabolism , Anti-N-Methyl-D-Aspartate Receptor Encephalitis/therapy , Autoantibodies/administration & dosage , Autoantibodies/cerebrospinal fluid , Receptors, N-Methyl-D-Aspartate/metabolism , Allosteric Regulation/drug effects , Allosteric Regulation/physiology , Animals , Cells, Cultured , HEK293 Cells , Hippocampus/drug effects , Hippocampus/metabolism , Humans , Hydroxycholesterols/chemistry , Hydroxycholesterols/pharmacology , Hydroxycholesterols/therapeutic use , Male , Mice , Mice, Inbred C57BL , Organ Culture Techniques
11.
Neurology ; 94(22): e2302-e2310, 2020 06 02.
Article in English | MEDLINE | ID: mdl-32161029

ABSTRACT

OBJECTIVE: To determine the frequency and significance of concurrent glial (glial-Ab) or neuronal-surface (NS-Ab) antibodies in patients with anti-NMDA receptor (NMDAR) encephalitis. METHODS: Patients were identified during initial routine screening of a cohort (C1) of 646 patients consecutively diagnosed with anti-NMDAR encephalitis and another cohort (C2) of 200 patients systematically rescreened. Antibodies were determined with rat brain immunostaining and cell-based assays. RESULTS: Concurrent antibodies were identified in 42 patients (4% from C1 and 7.5% from C2): 30 (71%) with glial-Ab and 12 (29%) with NS-Ab. Glial-Ab included myelin oligodendrocyte glycoprotein (MOG) (57%), glial fibrillary acidic protein (GFAP) (33%), and aquaporin 4 (AQP4) (10%). NS-Ab included AMPA receptor (AMPAR) (50%), GABAa receptor (GABAaR) (42%), and GABAb receptor (8%). In 39 (95%) of 41 patients, concurrent antibodies were detected in CSF, and in 17 (41%), concurrent antibodies were undetectable in serum. On routine clinical-immunologic studies, the presence of MOG-Ab and AQP4-Ab was suggested by previous episodes of encephalitis or demyelinating disorders (8, 27%), current clinical-radiologic features (e.g., optic neuritis, white matter changes), or standard rat brain immunohistochemistry (e.g., AQP4 reactivity). GFAP-Ab did not associate with distinct clinical-radiologic features. NS-Ab were suggested by MRI findings (e.g., medial temporal lobe changes [AMPAR-Ab], or multifocal cortico-subcortical abnormalities [GABAaR-Ab]), uncommon comorbid conditions (e.g., recent herpesvirus encephalitis), atypical tumors (e.g., breast cancer, neuroblastoma), or rat brain immunostaining. Patients with NS-Ab were less likely to have substantial recovery than those with glial-Ab (5 of 10 [50%] vs 17 of 19 [89%], p = 0.03). CONCLUSIONS: Between 4% and 7.5% of patients with anti-NMDAR encephalitis have concurrent glial-Ab or NS-Ab. Some of these antibodies (MOG-Ab, AQP4-Ab, NS-Ab) confer additional clinical-radiologic features and may influence prognosis.


Subject(s)
Anti-N-Methyl-D-Aspartate Receptor Encephalitis/blood , Anti-N-Methyl-D-Aspartate Receptor Encephalitis/diagnostic imaging , Autoantibodies/blood , Neuroglia/metabolism , Neurons/metabolism , Adolescent , Adult , Aged , Animals , Child , Child, Preschool , Female , Follow-Up Studies , Humans , Infant , Male , Middle Aged , Rats , Young Adult
12.
Ann Neurol ; 87(5): 670-676, 2020 05.
Article in English | MEDLINE | ID: mdl-32052483

ABSTRACT

OBJECTIVE: Antibodies against neuronal N-methyl-D-aspartate receptors (NMDARs) in patients with anti-NMDAR encephalitis alter neuronal synaptic function and plasticity, but the effects on other cells of the nervous system are unknown. METHODS: Cerebrospinal fluid (CSF) of patients with anti-NMDAR encephalitis (preabsorbed or not with GluN1) and a human NMDAR-specific monoclonal antibody (SSM5) derived from plasma cells of a patient, along the corresponding controls, were used in the studies. To evaluate the activity of oligodendrocyte NMDARs and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors in vitro after exposure to patients' CSF antibodies or SSM5, we used a functional assay based on cytosolic Ca2+ imaging. Expression of the glucose transporter (GLUT1) in oligodendrocytes was assessed by immunocytochemistry. RESULTS: NMDAR agonist responses were robustly reduced after preincubation of oligodendrocytes with patients' CSF or SSM5 but remained largely unaltered with the corresponding controls. These effects were NMDAR specific, as patients' CSF did not alter responses to AMPA receptor agonists and was abrogated by preabsorption of CSF with HEK cells expressing GluN1 subunit. Patients' CSF also reduced oligodendrocyte expression of glucose transporter GLUT1 induced by NMDAR activity. INTERPRETATION: Antibodies from patients with anti-NMDAR encephalitis specifically alter the function of NMDARs in oligodendrocytes, causing a decrease of expression of GLUT1. Considering that normal GLUT1 expression in oligodendrocytes and myelin is needed to metabolically support axonal function, the findings suggest a link between antibody-mediated dysfunction of NMDARs in oligodendrocytes and the white matter alterations reported in patients with this disorder. ANN NEUROL 2020;87:670-676.


Subject(s)
Anti-N-Methyl-D-Aspartate Receptor Encephalitis/metabolism , Autoantibodies/immunology , Oligodendroglia/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Adolescent , Adult , Animals , Anti-N-Methyl-D-Aspartate Receptor Encephalitis/immunology , Autoantibodies/cerebrospinal fluid , Autoantibodies/pharmacology , Autoantigens/immunology , Cells, Cultured , Child , Female , Glucose Transporter Type 1/biosynthesis , Humans , Male , Oligodendroglia/drug effects , Rats , Rats, Sprague-Dawley , Receptors, N-Methyl-D-Aspartate/immunology , Young Adult
13.
Article in English | MEDLINE | ID: mdl-31953318

ABSTRACT

OBJECTIVE: To report the clinical and oncologic associations of antibodies against Kelch-like protein 11 (KLHL11-ab), recently suggested as biomarkers of a paraneoplastic brainstem cerebellar syndrome associated with testicular seminoma, and to determine the value of immunohistochemistry as a screening technique. METHODS: Studies included 432 sera or CSF from 329 patients with paraneoplastic (157) or autoimmune neurologic syndromes (172); 63 with neurologic symptoms and benign teratomas; 28 with small-cell lung cancer, and 12 healthy subjects. KLHL11-abs were examined using a cell-based assay (CBA) with HEK293 cells transfected with a human KLHL11 clone. The CBA specificity was confirmed by immunoprecipitation. All positive samples were examined by immunohistochemistry on rat brain sections. RESULTS: KLHL11-abs were detected in 32 patients by CBA, and patients' antibodies immunoprecipitated KLHL11. Using rat brain immunohistochemistry, only 7 samples (22%) were positive. Patients' median age was 28 years (range 9-76 years), and 16 (50%) were women. Tumors were identified in 23/32 (72%) patients, including 14 teratomas and 7 seminomas or mixed germ cell tumors. Thirteen (41%) patients had cerebellar ataxia (7) or encephalitis with brainstem cerebellar symptoms (6), 7 (22%) anti-NMDA receptor (NMDAR) encephalitis (5 with ovarian teratoma), 5 (16%) opsoclonus-myoclonus, 3 (9%) limbic encephalitis, and 4 (12%) diverse neurologic symptoms (3 with benign teratomas). Concurrent autoantibodies occurred in 14 (44%) patients (7 anti-NMDAR, 6 Ma2, and 1 Hu). CONCLUSIONS: KLHL11-abs associate with a spectrum of syndromes and tumors wider than those previously reported; 44% of patients have concurrent neuronal antibodies, some of them (anti-NMDAR) pathogenically relevant. Brain immunostaining is not useful for routine screening of KLHL11-abs.


Subject(s)
Autoantibodies , Autoimmune Diseases of the Nervous System , Carrier Proteins/immunology , Neoplasms , Paraneoplastic Syndromes, Nervous System , Adolescent , Adult , Aged , Animals , Autoantibodies/blood , Autoantibodies/cerebrospinal fluid , Autoantibodies/immunology , Autoimmune Diseases of the Nervous System/blood , Autoimmune Diseases of the Nervous System/cerebrospinal fluid , Autoimmune Diseases of the Nervous System/immunology , Child , Female , HEK293 Cells , Humans , Male , Middle Aged , Neoplasms/blood , Neoplasms/cerebrospinal fluid , Neoplasms/immunology , Paraneoplastic Syndromes, Nervous System/blood , Paraneoplastic Syndromes, Nervous System/cerebrospinal fluid , Paraneoplastic Syndromes, Nervous System/immunology , Rats , Retrospective Studies , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...